高端响应式模板仅需388元

响应式网页设计、开放源代码、永久使用、不限域名、不限使用次数

精益求精的响应式网站模板只在这里

Coenzyme Q0, a novel quinone derivative of Antrodia camphorata, induces ROS-mediated cytotoxic autophagy and apoptosis against human glioblastoma cells in vitro and in vivo

Abstract

Coenzyme Q0 (CoQ0, 2,3-dimethoxy-5-methyl-1,4-benzoquinone) derived from Antrodia camphorata exerts anticancer activities against breast, melanoma, and ovarian carcinoma. Glioblastoma multiforme is a common tumor affecting the central nervous system. This study explored anticancer properties of CoQ0 on human glioblastoma both in vitro and in vivo, and explained the molecular mechanism behind it. CoQ0 treatment retarded the growth and suppressed colony formation in glioblastoma (U87MG and GBM8401) cells. CoQ0 induced apoptosis by activation of caspase-3, cleavage of PARP, and dysregulation of Bax and Bcl-2 in both cell lines. Annexin V/PI staining indicated CoQ0 mediated necrosis and apoptosis. Interestingly, AVOs were increased trough induction of autophagy by CoQ0, LC3-II accumulation, and p62/SQSTM1 expression, leading to death mechanism. Z-VAD-FMK has no effect on CoQ0-induced autophagy but autophagy inhibition by 3-methyladenine (3-MA)/chloroquine (CQ) led to CoQ0-induced apoptosis. N-acetylcysteine (NAC) inhibited CoQ0-mediated ROS production and diminished CoQ0-induced apoptotic and autophagic cell death. Further, CoQ0 inhibited PI3K/AKT/mTOR signaling pathways. CoQ0 reduced the tumor burden in U87MG and GBM8401 xenografted athymic nude mice and significantly modulated tumor xenograft by inducing apoptosis and autophagy. CoQ0 generated ROS-mediated apoptotic and autophagic cell death for effective glioblastoma treatment.


联系我们

:9:30-22:30