高端响应式模板仅需388元

响应式网页设计、开放源代码、永久使用、不限域名、不限使用次数

精益求精的响应式网站模板只在这里

Develop a hybrid machine learning model for promoting microbe biomass production

Abstract

Since the cultivation condition of microbe biomass production (mycelia yield) involves a variety of factors, it's a laborious process to obtain the optimal cultivation condition of Antrodia cinnamomea (A. cinnamomea). This study proposed a hybrid machine learning approach (i.e., ANFIS-NM) to identify the potent factors and optimize the cultivation conditions of A. cinnamomea based on a 32 fractional factorial design with seven factors. The results indicate that the ANFIS-NM approach successfully identified three key factors (i.e., glucose, potato dextrose broth, and agar) and significantly boosted mycelia yield. The interpretability of ANFIS rules made the cultivation conditions visually interpretable. Subsequently, a three-factor five-level central composite design was used to probe the optimal yield. This study demonstrates the proposed hybrid machine learning approach could significantly reduce the time consumption in laboratory cultivation and increase mycelia yield that meets SDGs 7 and 12, hitting a new milestone for biomass production.


联系我们

:9:30-22:30